Média móvel Este exemplo ensina como calcular a média móvel de uma série temporal no Excel. Uma média móvel é usada para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossas séries temporais. 2. Na guia Dados, clique em Análise de dados. Nota: não consigo encontrar o botão Análise de dados Clique aqui para carregar o complemento Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Intervalo de entrada e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e digite 6. 6. Clique na caixa Gama de saída e selecione a célula B3. 8. Traçar um gráfico desses valores. Explicação: porque definimos o intervalo para 6, a média móvel é a média dos 5 pontos de dados anteriores e o ponto de dados atual. Como resultado, picos e vales são alisados. O gráfico mostra uma tendência crescente. O Excel não pode calcular a média móvel para os primeiros 5 pontos de dados porque não há suficientes pontos de dados anteriores. 9. Repita os passos 2 a 8 para o intervalo 2 e o intervalo 4. Conclusão: quanto maior o intervalo, mais os picos e os vales são alisados. Quanto menor o intervalo, mais próximas as médias móveis são para os pontos de dados reais. Ao calcular uma média móvel em execução, colocar a média no período de tempo médio faz sentido No exemplo anterior, calculamos a média dos primeiros 3 períodos de tempo e colocamos Perto do período 3. Poderíamos ter colocado a média no intervalo de tempo de três períodos, isto é, ao lado do período 2. Isso funciona bem com períodos ímpares, mas não tão bons para períodos pares. Então, onde colocamos a primeira média móvel quando M 4 Tecnicamente, a Média Móvel cairá em t 2,5, 3,5. Para evitar este problema, suavizamos as MAs usando M 2. Assim, suavizamos os valores suavizados. Se nós medimos um número par de termos, precisamos suavizar os valores suavizados. A tabela a seguir mostra os resultados usando M 4. Indicador Médio Médio As médias móveis fornecem Uma medida objetiva da direção da tendência ao suavizar os dados de preços. Normalmente calculado usando os preços de fechamento, a média móvel também pode ser usada com a mediana. típica. Fechamento ponderado. E preços altos, baixos ou abertos, bem como outros indicadores. As médias móveis de comprimento mais curto são mais sensíveis e identificam novas tendências anteriormente, mas também fornecem mais falsos alarmes. As médias móveis mais longas são mais confiáveis, mas menos sensíveis, apenas recuperando as grandes tendências. Use uma média móvel que é metade do comprimento do ciclo que você está rastreando. Se o comprimento do ciclo de pico a pico for aproximadamente 30 dias, então uma média móvel de 15 dias é apropriada. Se 20 dias, uma média móvel de 10 dias é apropriada. Alguns comerciantes, no entanto, usarão médias móveis de 14 e 9 dias para os ciclos acima, na esperança de gerar sinais ligeiramente à frente do mercado. Outros favorecem os números de Fibonacci de 5, 8, 13 e 21. As médias móveis de 20 a 40 semanas (20 a 40 semanas) são populares para ciclos mais longos de 20 a 65 dias (4 a 13 semanas), as médias móveis são úteis para ciclos intermediários e 5 Para 20 dias para ciclos curtos. O sistema de média móvel mais simples gera sinais quando o preço cruza a média móvel: Vá longo quando o preço cruza acima da média móvel abaixo. Fique curto quando o preço cruza abaixo da média móvel de cima. O sistema é propenso a whipsaws em mercados variados, com o cruzamento de preços de um lado para o outro através da média móvel, gerando uma grande quantidade de sinais falsos. Por essa razão, os sistemas móveis em média normalmente empregam filtros para reduzir whipsaws. Sistemas mais sofisticados utilizam mais de uma média móvel. Duas médias móveis usam uma média móvel mais rápida como substituto do preço de fechamento. Três médias móveis empregam a terceira média móvel para identificar quando o preço está variando. Múltiplas médias móveis usam uma série de seis médias móveis rápidas e seis médias móveis lentas para se confirmarem. As médias móveis deslocadas são úteis para fins de tendência, reduzindo o número de whipsaws. Os canais Keltner usam bandas plotadas em um múltiplo do alcance verdadeiro médio para filtrar os cruzamentos médios móveis. O popular MACD (Moving Average Convergence Divergence) indicador é uma variação do sistema de duas médias móveis, plotado como um oscilador que subtrai a média lenta da média em movimento rápido. Existem vários tipos diferentes de médias móveis, cada uma com suas próprias peculiaridades. As médias móveis simples são as mais fáceis de construir, mas também as mais propensas a distorção. As médias móveis ponderadas são difíceis de construir, mas confiáveis. As médias móveis exponenciais obtêm os benefícios da ponderação combinada com facilidade de construção. As médias móveis mais selvagens são usadas principalmente em indicadores desenvolvidos por J. Welles Wilder. Essencialmente, a mesma fórmula que as médias móveis exponenciais, eles usam diferentes métodos de pontuação para quais usuários precisam permitir. Painel indicador mostra como configurar as médias móveis. A configuração padrão é uma média móvel exponencial de 21 dias. Os dados de mobilidade removem a variação aleatória e mostram tendências e componentes cíclicos. Inerente na coleta de dados obtidos ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é suavização. Esta técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de suavização Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Em primeiro lugar, investigaremos alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico entrega em unidades de 1000 dólares. Heshe toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média ou média calculada dos dados 10. O gerente decide usar isso como a estimativa de despesas de um fornecedor típico. É uma estimativa boa ou ruim O erro quadrático médio é uma maneira de julgar o quão bom é um modelo. Calculamos o erro quadrático médio. O valor do erro verdadeiro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados de MSE, por exemplo, os resultados são: Erros de Erro e Esquadrão A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência. Um olhar no gráfico abaixo mostra claramente que não devemos fazer isso. A média pesa todas as observações passadas igualmente. Em resumo, afirmamos que a média ou média simples de todas as observações passadas é apenas uma estimativa útil para a previsão quando não há tendências. Se houver tendências, use diferentes estimativas que levem em consideração a tendência. A média pesa igualmente todas as observações passadas. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra maneira de calcular a média é adicionando cada valor dividido pelo número de valores, ou 33 43 53 1 1.3333 1.6667 4. O multiplicador 13 é chamado de peso. Em geral: barra frac somleft (fração direita) x1 esquerda (fração direita) x2,. , Esquerda (fratura direita) xn. Os (a esquerda (fratura direita)) são os pesos e, é claro, somam para 1.
No comments:
Post a Comment